It’s a simple Clock, Event message, temperature and humidity display, and so far it’s working pretty well. It’s built around an Arduino Mega2560, rtc DS1307 and uses a DHT11 sensor.
Components:
1. arduino mega2560
2. RTC DS1307
3. DHT11
4. Push button Switch - 3nos
.5. Dot matrix module - 8 nos
6. LDR
7. 10k resistor
Circuit diagram:
arduino Code:
/*
Clock project using two MX7219 matrix displays and the AdaFruit FX Soundboard
Provides date, time, temp, humidity and event notifications in rotating order
Also can chime in multiple ways, including Westminster chimes
Chimes are provided by Adafruit FX Soundboard in GPIO mode
*/
// Code to set up the clock
// Pushbutton 1 is the toggler , cycle between year, month, day, hours, minutes, seconds
// Pushbutton 2 is the increment up one
// Pushbutton 3 is the decrement down one
// Chime setup for toggle switch
// Center = No chimes
// Up = Westminster hours + quarterly
// Down = Simple Bell (hours and 1/2 hour)
// Comment out next line to leave out the little show
#define showoffcode // include "show off" graphics at startup
// include the libraries for LCD Display, DHT-11 Temperature/humidity sensor and DS3231 RTC and
// include libraries for bigger seven segment display with backpack
#include "DHT.h"
#include <Wire.h>
#include "RTClib.h"
#include <MD_MAX72xx.h>
// uncomment next two lines to use UART for SoundBoard rather than GPIO
//#include <Adafruit_Soundboard.h>
//#include <SoftwareSerial.h>
// Set up output functions
#define DHTPIN A1 //Temp Humidity sensor on pin 9
#define DHTTYPE DHT11 // DHT 11 because the sensor is that type
// Initialize DHT sensor for normal 16mhz Arduino
DHT dht(DHTPIN, DHTTYPE);
// Initialize for Adafruit DS3231 RTC real time clock
RTC_DS3231 rtc;
// uncomment next set of lines to use UART for SoundBoard
/*
// Choose any two pins that can be used with SoftwareSerial to RX & TX for UART SoundBoard
//#define SFX_TX 5
//#define SFX_RX 6
// Connect to the RST pin on the Sound Board
#define SFX_RST 4
// You can also monitor the ACT pin for when audio is playing!
// we'll be using software serial
//SoftwareSerial ss = SoftwareSerial(SFX_TX, SFX_RX);
// pass the software serial to Adafruit_soundboard, the second
// argument is the debug port (not used really) and the third
// arg is the reset pin
//Adafruit_Soundboard sfx = Adafruit_Soundboard(&ss, NULL, SFX_RST);
// can also try hardware serial with
// Adafruit_Soundboard sfx = Adafruit_Soundboard(&Serial1, NULL, SFX_RST);
*/
// Define the number of devices we have in the chain and the hardware interface
// NOTE: These pin numbers will probably not work with your hardware and may
// need to be adapted
#define HARDWARE_TYPE MD_MAX72XX::FC16_HW // NOTE: This parameter differs by vendor
#define MAX_DEVICES 8 // 2 x 4 matrices per unit
//Pins for Arduino Uno
//#define CLK_PIN 13 // or SCK (this is for the UNO, different for the Mega
//#define DATA_PIN 11 // or MOSI
//#define CS_PIN 10 // or SS
//Pins for Arduino Mega
#define CLK_PIN 52 // or SCK 13
#define DATA_PIN 51 // or MOSI 11
#define CS_PIN 53 // or SS 10
// SPI hardware interface
MD_MAX72XX mx = MD_MAX72XX(HARDWARE_TYPE, CS_PIN, MAX_DEVICES);
// We always wait a bit between updates of the display
#define DELAYTIME 100 // in milliseconds
// Text parameters
#define CHAR_SPACING 1 // pixels between characters
//const int CHAR_PIXELS = 6; // Pixels taken by each character (including trailing space)
//const int MAX_CHARS = (MAX_DEVICES*COL_SIZE)/ CHAR_PIXELS; // Maximum characters at once (happens to be 10 btw)
//const int LEFT_OVER = (MAX_DEVICES*COL_SIZE)- (CHAR_PIXELS*MAX_CHARS); //Since its not 'even' additional pad from front on printText
const int BufferStringLength = 31;
char BufferString [BufferStringLength]; //used to construct printouts
#define DecToAscii 48 // convert number to ascii (add as a constant)
#define DegreeSign 0x0090 // for display of 'degrees' after temperature
int TDigits[4] = {0, 0, 0, 0}; // used to convert four digits to four chacacters
#define TDOnes 3 // positions in arrays and templates
#define TDTens 2
#define TDHundreds 1
#define TDThousands 0
#define sunday 0 // used for events, floating events and holidays
#define monday 1 // just for readability
#define thursday 4
#define january 1
#define february 2
#define march 3
#define april 4
#define may 5
#define june 6
#define july 7
#define august 8
#define september 9
#define october 10
#define november 11
#define december 12
//Template Strings and pointers
const int LOTS = 13; // Length of TimeString (without terminator)
char TimeString[LOTS + 1 ] = {' ', ' ', '1', '2', ':', '3', '1', ':', '4', '5', ' ', 'P', 'M', '\0'};
char DateString[ ] = {'1', '2', '/', '3', '1', '/', '2', '0', '1', '9', '\0'};
char TempString[ ] = {'T', 'e', 'm', 'p', ' ', '7', '2', '.', '0', DegreeSign, 'F', '\0'};
char HumidString[ ] = {'H', 'u', 'm', ' ', '2', '5', '.', '0', '%', '\0'};
const int THptr = 2; // Pointers within the strings
const int TMptr = 5; // for loading values
const int TSptr = 8;
const int TAMPMptr = 11;
const int DMptr = 0;
const int DDptr = 3;
const int DYptr = 6;
const int TEMPptr = 5;
const int HUMIDptr = 4;
// Differentiated Displays
const int DisplayTime = 0;
const int DisplayDate = 2;
const int DisplayDOW = 1;
const int DisplayTemp = 3;
const int DisplayHumid = 4;
const int DisplayEvent = 5;
const int DisplayEventRepeat = 2; //times to repeat the scrolling 'event' display
const int DisplaySize = 6; // Nunber of different displays
int DisplayIndex = DisplayTime; // display we are on at the time
const int DisplayDelayArray[DisplaySize] = {100, 50, 30, 30, 30, 20}; // multiplier for each event
const int DisplayDelay = 100; // milliseconds to leave each display * its multiplier
unsigned long DisplayTimer; // used to time each matrix display
char daysOfTheWeek[7][12 ] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"};
// Event arrays
// Load with month of 'event', day of event and description to be displayed
const int eventnumber = 21; // number of events and remember: No strings longer than 30 characters!
int eventmonth [eventnumber] = {june, april, november, february, july, december, november, june, december, june, march, december, january,
september, october, march, february, february, july,december, february};
int eventday [eventnumber] = {11, 1, 23, 12, 4, 3, 12, 29, 25, 18, 17, 31, 1, 3, 31, 17, 14, 2, 14, 30,12};
char* eventdescription [eventnumber] =
{ Enter here special days ""New Year's Eve", "New Year's Day",
"
};
bool event; // logic flag "on" = event found
int eventindex; // and the event we found
const int maxevents = 3; // maximum of three events (real and floating combined)
char* eventstrings[maxevents] ; // used to store displayed events
String floatstring = " "; // used for floating events (e.g., Thanksgiving)
#define pb1pin 2 // Pin assignments for reset, increment and decrement
#define pb2pin 3
#define pb3pin 4
#define showoffbuttonpin 7 // invoke showing off the matrix display
#define DoWestminster 5
#define DoHoursOnly 6
#define silent 0 // no chiming at all
#define hoursonly 1 // no prelude, just chime number of hours and half hour single chime
#define westminster 2 // hours + Westminster prelude per quarter
int ChimeValue = silent; // default to silent
const int LEDpin = A0; // Pin assignment for analog reading LDR for LED brightness
const int minbright = 0; // MAX_BRIGHT for this module is 15
const int midbright = 2; // but these values "seem" to work
const int maxbright = 4;
int setupindex = 0; // first thing to set if required
bool insetupmode = false; // and assume RTC is set, OK, etc., and no 'set' required
bool setinsetup = false; // flag set to true at interrupt level to go back into setup mode
// date time array for setting, reading, displaying
#define setsize 6 // size of the setting array
#define setyear 0 // index name for each element
#define setmonth 1
#define setday 2
#define sethour 3
#define setminute 4
#define setsecond 5
int setarray [setsize] = {2019, 1, 1, 1, 1, 0}; // set year, month, day, hour, minutes, seconds
int lowlimit [setsize] = {2019, 1, 1, 0, 1, 0}; // lower limit for each
int highlimit [setsize] = {2080, 12, 31, 23, 59, 59}; //high limit for each
const int setdesclength = 4; // maximum length of 'set' descriptor
char setdesc [setsize] [setdesclength] = {"Yr ", "Mon", "Day", "Hr ", "Min", "Sec"};
#define cqtr0 1 // Chime the hour
#define cqtr1 2 // Chime the quarter hour
#define cqtr2 3 // Chime the half hour
#define cqtr3 4 // Chime the 3/4 hour
// Definitions for the Sound Board
#define SoundTruncatedSingle 0 // Truncated Single Westminster
#define SoundQ1 1 // First Quarter
#define SoundQ2 2 // Second Quarter
#define SoundQ3 3 // Third
#define SoundQ4 4 // Fourth (before hour chime)
#define SoundTrailingSingle 5 // Finish Westminster string of chimes with longer sound tail
#define SoundTruncatedBell 6 // Simple Bell
#define SoundTrailingBell 7 // Final Bell (like single, has longer 'tail')
#define SoundStartup 8 // startup sound
#define SoundShowOff 9 // Play during show off of matrix
#define FirstSoundPin 30 // first pin to use for soundboard (0-10 available on soundboard);
#define SizeSoundPin 10 // number of pins used (must be consecutive)
#define fxset 150 // Time soundboard must be held LOW to register (documentation says 125 ms)
#define SoundBusyPin 8 // Soundboard pin that goes LOW when board is active
const int SizeQueue = 15; // Assume Q4+12 bells is the maximum that'll be in the queue at any point
int SoundQueue[SizeQueue]; // Circular Queue for waiting sounds
int SoundQueuePtr = -1; //pointer for Queue fill Position
int SoundPlayPtr = -1; //pointer for Queue play Position
int SoundQueueCtr = 0; // number of items in the queue
int setstrike = -1; // Chime/strike flag
byte alreadychimed = false ; // Used to keep from chiming multiple times during the "hot" second
const int BounceDelay = 250; // Not really 'bounce', its a change of state detection
int i; // generic index variable
int dayoftheweek; // stored day of the week (0-6, 0 = Sunday)
int phours; // for print conversion of military time
float temperaturef; // farenheit temperature back
int temperature; // integer version of temperature for matrix
float temperaturec; // centrigade temperature back (not used)
float humidityf; // and humidity
int humidity ; // and same as temp
float tempadjust = 0; // temperature adjustment for sensor (I found it didn't read right against 'comps')
byte degreesymbol = 223; // LCD output of 'degree' symbol
#define DDT
#ifdef DDT // debugging tools
void DDTl(String st, int vt) { // Print descriptor and value and new line
DDTs(st, vt);
Serial.println(" ");
}
void DDTs(String st, int vt) { // Print descriptor and value
Serial.print(" ");
Serial.print(st);
Serial.print(" ");
Serial.print(vt);
}
#endif //DDT//
void setup()
// put your setup code here, to run once:
{
Wire.begin(); // initialize I2C interface
dht.begin(); // initialize the temp/humidity sensor
mx.begin(); // and MX7219 display
Serial.begin (9600); //Terminal monitor printing for debugging
// softwareserial at 9600 baud (uncomment this line and next for UART control of sound board
// ss.begin(9600);
pinMode(pb1pin, INPUT_PULLUP); // The three pushbuttons - reset
pinMode(pb2pin, INPUT_PULLUP); // increment
pinMode(pb3pin, INPUT_PULLUP); // decrement
pinMode (DoWestminster, INPUT_PULLUP); // When pulled 'low' we want Westminster chimes
pinMode (DoHoursOnly , INPUT_PULLUP); // When pulled 'low' we want hours and 1/2 bell (neither is 'silent')
#ifdef showoffcode
pinMode(showoffbuttonpin, INPUT_PULLUP) ; // if show off matrix is there, initialize pin
#endif //showoffcode//
for (i = FirstSoundPin; i < FirstSoundPin + SizeSoundPin; i++) { // pins for sound board
pinMode(i, OUTPUT); // each an output
digitalWrite(i, HIGH); // and initialize high (off)
}
// set up interupt for PB1 // if PB1 is pushed, it'll pick up on next release from Matrix display
attachInterrupt(digitalPinToInterrupt(pb1pin), SetToSetup, FALLING); // and re-enter setup mode (after the end of current display)
#ifdef showoffcode
// ShowOff(); // Show off a little (uncomment to give initial showoff at beginning)
#endif //showoffcode//
QueueSound(SoundStartup); // play boot up sound
PlaySound();
if (! rtc.begin()) { // check that clock is there
scrollText("Couldn't find RTC"); // clock missing is a fatal error
while (1);
}
if (rtc.lostPower()) { // if power lost force a setup, else load 'current' values and
scrollText("RTC lost power!");
delay(1000);
scrollText("Replace battery?");
delay(1000);
scrollText("Setup Mode: ");
setupindex = setyear - 1; // setup differently (becuase it will increment)
insetupmode = true;
for (i = 0; i < setsize; i++) {
setarray[i] = lowlimit[i];
}
} else // else reload from RTC
{ DateTime (setarray[setyear], setarray[setmonth], setarray[setday], setarray[sethour], setarray[setminute], setarray[setsecond]) = rtc.now();
insetupmode = false; // not in setup mode, and
setinsetup = false; //no interrupt
}
// Two alternative modes of setting date and time (for debugging, just un-comment):
// This line sets the RTC to the date & time this sketch was compiled
// rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
// This line sets the RTC with an explicit date & time, for example to set
// January 21, 2014 at 3am you would call:
// rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
LEDBrightness(); // Do an initial check for room brightness
} // end of setup
void loop() { // Main code divided into setup mode and non-setup mode
while (insetupmode) { // code for setting time, date set, etc.
// Read the increment button
if (digitalRead(pb2pin) == LOW) {
setarray[setupindex]++; // read increment of current item
delay(BounceDelay);
if (setarray[setupindex] > highlimit[setupindex]) {
setarray[setupindex] = lowlimit[setupindex];
}
ShowValue(setupindex, setdesc[setupindex]); // and display description and value
}
// Read the decrement Button
if (digitalRead(pb3pin) == LOW) {
setarray[setupindex]--; // read decrement of value
delay(BounceDelay);
if (setarray[setupindex] < lowlimit[setupindex]) {
setarray[setupindex] = highlimit[setupindex];
}
ShowValue(setupindex, setdesc[setupindex]); // and display description and value
}
// Read for another increment of index
if (digitalRead(pb1pin) == LOW) { // Rolling through Chime, Year, Month, Day, Hour, Minutes, Seconds
setupindex++ ; // increment index
delay(BounceDelay);
if (setupindex < setsize) {
ShowValue(setupindex, setdesc[setupindex]); // show description and value if in bounds
}
if (setupindex >= setsize) { // and finally exiting setup mode after setting chime, date and time
rtc.adjust(DateTime(setarray[setyear], setarray[setmonth], setarray[setday], setarray[sethour], setarray[setminute], setarray[setsecond]));
insetupmode = false;
DisplayIndex = DisplayTime;
} //exit setup mode when done
}
} // End of "While" for setup
// Begin regular loop for date, time, temp humidity and event display
while (!insetupmode) {
GetTempandHumid(); // read temperature and humidity from sensor
ChimeValue = ReadChimeSetting(); // read SPDT Center off switch for silent, westminster or hours only (and 1/2)
GetTheDate(); // load date array from RTC for a chime/bell check
CheckForChime(); // Check for a chime event between displays
CheckForEvent(setarray[setmonth], setarray[setday], dayoftheweek); // check for static and floating events
MatrixDisplay(); // Do whatever display is required on the MX7219
LEDBrightness(); // Good place to check for change in room brightness
// end of display update logic
// Read a potential request for an entry into setup from PB 1
if ((digitalRead(pb1pin) == LOW) || setinsetup) { // to see if we go back to setup mode
insetupmode = true; // via a pushbutton or the interrupt
setinsetup = false; // clear the interrupt flag
setupindex = 0; // re-initialize to 'Year' in setup
DisplayIndex = DisplayTime; // and go back to time display when exit setup
scrollText("Setup Mode: ");
delay(2000);
ShowValue(setupindex, setdesc[setupindex]); // show the first setup item (Year)
delay(BounceDelay);
}
#ifdef showoffcode
if (digitalRead(showoffbuttonpin) == LOW) {ShowOff();} // check for want to show off matrix
#endif //showoffcode//
} // end of not in setup
} // end of sketch
void MatrixDisplay() { // Main display routine for display sequences
Scrollup(); // Clear last display
if (DisplayIndex >= DisplaySize) {
DisplayIndex = DisplayTime; // reset if at the end
}
DisplayTimer = DisplayDelayArray[DisplayIndex] * DisplayDelay; // set individual display time
switch (DisplayIndex) { // and do next display
case DisplayTime: // Dislay the time
do // time is different in that there's a constant
{ // update of time during display and also play chime, bell etc.
GetTheDate(); // Get Current Time
CheckForChime(); // Check for a chime event
LoadNumber(phours); // Load the 4 digit character array from number
TimeString[THptr] = TDigits[TDTens]; // left digit of the two digit hour
TimeString[THptr + 1] = TDigits[TDOnes]; // rightmost digit
if (TimeString[THptr] == '0') {
TimeString[THptr] = ' '; // eliminate leading zero
}
LoadNumber(setarray[setminute]); // do same for minutes
TimeString[TMptr] = TDigits[TDTens]; // except no need to do space for zero
TimeString[TMptr + 1] = TDigits[TDOnes];
LoadNumber(setarray[setsecond]); // seconds then
TimeString[TSptr] = TDigits[TDTens];
TimeString[TSptr + 1] = TDigits[TDOnes];
if (setarray[sethour] < 12) // and AM vs PM
{
TimeString[TAMPMptr] = 'A';
}
else
{
TimeString[TAMPMptr] = 'P';
}
printText(TimeString, LOTS, false); // Keep position (no centering) because time keeps updating during display and chimes
PlaySound(); // Play any chimes or bells
if (SoundQueueCtr == 0) {
DisplayTimer = DisplayTimer - DisplayDelay; // if no sound, use display delay logic
delay(DisplayDelay);
}
} while ((DisplayTimer > 0) || (SoundQueueCtr > 0)); // leave this display when no sound or no delay left
DisplayIndex++ ; // then move on to next display item
break;
case DisplayDate: // Month, Day and Year Display
LoadNumber(setarray[setmonth]);
DateString[DMptr] = TDigits[TDTens];
if (DateString[DMptr] == '0') {
DateString[DMptr] = ' ';
}
DateString[DMptr + 1] = TDigits[TDOnes];
LoadNumber(setarray[setday]);
DateString[DDptr] = TDigits[TDTens];
DateString[DDptr + 1] = TDigits[TDOnes];
LoadNumber(setarray[setyear]);
for (int i = 0; i < 4; i++) {
DateString[DYptr + i] = TDigits[i];
}
printCenter(DateString);
CommonDelay(DisplayTimer);
DisplayIndex++ ;
break;
case DisplayDOW: // Just display the day of week string
printCenter(daysOfTheWeek[dayoftheweek]);
CommonDelay(DisplayTimer);
DisplayIndex++ ;
break;
case DisplayTemp: // Temperature display
LoadNumber(temperature);
TempString[TEMPptr] = TDigits[TDHundreds];
TempString[TEMPptr + 1] = TDigits[TDTens];
TempString[TEMPptr + 3] = TDigits[TDOnes];
printCenter(TempString);
CommonDelay(DisplayTimer);
DisplayIndex++ ;
break;
case DisplayHumid: // Humidity display
LoadNumber(humidity);
HumidString[HUMIDptr] = TDigits[TDHundreds];
HumidString[HUMIDptr + 1] = TDigits[TDTens];
HumidString[HUMIDptr + 3] = TDigits[TDOnes];
printCenter(HumidString);
CommonDelay(DisplayTimer);
DisplayIndex++ ;
break;
case DisplayEvent: // Event Display
if (event) { // "Real" events repeat 3 times
if (eventindex > 0 ) { // for case where there is more than one event
while (eventindex >= 0)
{scrollText(eventstrings[eventindex]); // scroll each of them once
if (eventindex > 0) {
delay(DisplayDelay * 6);
printCenter("and");
delay(DisplayDelay * 6);}
eventindex--; // and decrement
delay(DisplayDelay * 2);
}
}
else { // case of only one event -- repeat it for readability
for (int i = 1; i <= DisplayEventRepeat; i++) { // scroll either static or floating event
scrollText(eventstrings[eventindex]); // the index is 0 (greater than zero if multiple events)
}
delay(DisplayDelay * 2);
}
} // end of "if event" logic
if (!event){ // Scroll Default message only once
if (setarray[sethour] >= 6 && setarray[sethour] <= 11) {
scrollText("Good Morning ");}
else if (setarray[sethour] >= 12 && setarray[sethour] <= 16) {
scrollText(" Afternoon");}
else if (setarray[sethour] >= 17 && setarray[sethour] <= 21) {
scrollText(" Evening");} else{scrollText("Good Night"); }
}
CommonDelay(DisplayTimer);
DisplayIndex++ ;
break;
default:
scrollText("Should never get here");
while (1);
} // End of Switch
} // End of MatrixDisplay
void GetTheDate() { // Read RTC into array
DateTime now = rtc.now();
setarray[setyear] = now.year();
setarray[setmonth] = now.month();
setarray[setday] = now.day();
setarray[sethour] = now.hour();
setarray[setminute] = now.minute();
setarray[setsecond] = now.second();
dayoftheweek = now.dayOfTheWeek();
if (setarray[sethour] <= 12) // convert military time to am pm
{
phours = setarray[sethour];
}
else
{phours = setarray[sethour] - 12;}
if (phours <= 0) { phours = 12; } // don't print 0 for midnite, print "12"
} // End of Get The Date
void GetTempandHumid(){ // Temperature and humidity update
// Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
humidityf = dht.readHumidity();
// Read temperature as Fahrenheit
temperaturef = (dht.readTemperature()) + tempadjust; // read and correct for inaccuracy in sensor
// Check if any reads failed and exit early (to try again).
if (isnan(humidityf) || isnan(temperaturec) || isnan(temperaturef)) {
temperaturef = 0; // use 0 as a no-read
humidityf = 0; // error indication
}
temperature = temperaturef * 10.0; // get read for matrix printout
humidity = humidityf * 10.0;
} // end of Temperature and Humidity update
void SetToSetup() { // interrupt level back to setup
if ((!insetupmode) && (!setinsetup)) { // skip if we are already in Setup mode or have seen the interrupt
setinsetup = true; // Go back into setup at next loop
DisplayTimer = 0;
} // and zero the timer to speed that up if you can
} // SetToSetup
void CommonDelay(long int MyDelay) { // Common delay routine
DisplayTimer = MyDelay;
do {
DisplayTimer = DisplayTimer - DisplayDelay;
delay(DisplayDelay);
GetTheDate(); // load date array from RTC for a chime/bell check
CheckForChime(); // if a chime happens, setup to end delay
} while ((DisplayTimer > 0) && (!setinsetup) && (SoundQueueCtr <= 0)); // repeat while still time and no interrupt and no sound waiting
if (SoundQueueCtr > 0){DisplayIndex = DisplayTime-1;} // if leaving due to chime, go directly to time
} // End of CommonDelay
int ReadChimeSetting() {
int returnvalue = silent; // Assume 'silent' (Center position)
if (digitalRead(DoWestminster) == LOW) {
returnvalue = westminster;
} else if (digitalRead(DoHoursOnly) == LOW) {
returnvalue = hoursonly;
}
return returnvalue;
}
// Routine to deal with combinations of chime type, time of day and the current hour
// called parameters are chime type (e.g., Westminster), Strike type (hour, qtr, half, 3/4) and the hour in military time
// Note for delays and print cycles: You need to call this at least once during the 'golden' minute (0,15,30,45)
void CheckForChime() { // Logic for chiming
setstrike = -1; // initialize 'strike' flag to "no strike"
if (ChimeValue != silent) // if silenced due to setting silent, skip the whole thing
{
if (setarray[setminute] == 0) { // Look for 'on the hour'
setstrike = cqtr0;
} else if (setarray[setminute] == 15 ) { // Look for on the quarter hour
setstrike = cqtr1;
} else if (setarray[setminute] == 30 ) { // Look for on the 1/2 hour
setstrike = cqtr2;
}
else if (setarray[setminute] == 45 ) { // Look for on the three-quarter hour
setstrike = cqtr3;
}
else {
alreadychimed = false; // none of the above, reset ability to chime
}
if (setstrike > 0 && !alreadychimed ) {
chime(ChimeValue, setstrike, setarray[sethour]); // call chiming with 'type of chime'; 0,15,30,45 ; and # hours
DisplayIndex = DisplayTime; // force display of time while chiming
alreadychimed = true; // we will be here multiple times but only chime once
}
} // end of logic for chiming
} // end of CheckForChime
void chime (int chimetype, int strikeflag, int chour) {
int chour1; // am pm variable\
if (chour <= 12) {
chour1 = chour; // convert military time to am pm
} else {
chour1 = chour - 12;
}
if (chour1 <= 0) {
chour1 = 12; // don't chime 0 for midnite, chime 12
}
if (chimetype == hoursonly && strikeflag == cqtr2) {
QueueSound(SoundTrailingBell); // 1/2 hour only, do single 'ding'
}
else if ( chimetype == hoursonly && strikeflag == cqtr0) {
for (int i = 1; i < chour1; i++) {
QueueSound(SoundTruncatedBell); // Ding once less than hours
}
QueueSound(SoundTrailingBell);
} // and follow by trailing bell as last 'ding' (if used)
else if (((chimetype == westminster) ) && strikeflag == cqtr1) {
QueueSound(SoundQ1); // First Quarter
}
else if (((chimetype == westminster) ) && strikeflag == cqtr2) {
QueueSound(SoundQ2); // Second Quarter
}
else if (((chimetype == westminster)) && strikeflag == cqtr3) {
QueueSound(SoundQ3); // Third Quarter
}
else if (((chimetype == westminster)) && strikeflag == cqtr0) {
QueueSound(SoundQ4);
for (int i = 1; i < chour1; i++) {
QueueSound(SoundTruncatedSingle); // Chime once less than hours
}
QueueSound(SoundTrailingSingle);
} // Chime Westminster final hours
} // end of Chime
// Routine to check for 'real' (static) events and floating events (e.g., Memorial Day, Thanksgiving, Mother's Day and Fathers Day)
/* Memorial Day is Last Monday in May
Thanksgiving is 4th Thursday in November
Mother's Day is 2nd Sunday in May
Father's Day is 3rd Sunday in June
MLK Day is 3rd Monday in February
Memorial Day is last Monday in May
Labor Day is first Monday in September
Daylight Savings Times starts 2nd Sunday in March
Daylight Savings Times ends first Sunday in November
Indigenous People's Day is second Monday in October (also its Columbus Day)
*/
void CheckForEvent(int m, int d, int dow) { // called with Month, Day within month and day of the week (0 = Sunday)
event = false; // assume neither static or floating
eventindex = -1; // initial index to eventstrings
// Static event check
for (int i = 0; i < eventnumber; i++) { // then check the static events
if ((setarray[setmonth] == eventmonth[i]) && (setarray[setday] == eventday[i]))
{ event = true; // set if match on month and day
eventindex++; // found one!
eventstrings[eventindex] = eventdescription[i]; // store pointer to static event description
}
}
// Floating event check
floatstring = "none"; // initialize string
if ((dow == thursday) && (m == november) && (d >= 22) && (d <= 28)) { // Thanksgiving
floatstring = "Thanksgiving";
}
else if ((dow == sunday) && (m == may) && (d >= 8) && (d <= 14)) { // Mother's Day
floatstring = "Mother's Day";
}
else if ((dow == sunday) && (m == june) && (d >= 15) && (d <= 21)) { //Father's Day
floatstring = "Father's Day";
}
else if ((dow == monday) && (m == september) && (d <= 7) ) { //Labor Day
floatstring = "Labor Day";
}
if (floatstring != "none" ) { // did we load anything?
event = true; // if so, then we have one
eventindex++; // so load it into event display queue
eventstrings[eventindex] = floatstring.c_str(); // store pointer to static event description
}
} // end of floatingevent
void LEDBrightness() {
int LEDvalue;
LEDvalue = analogRead(LEDpin); // Read LDR value (may need to play with values)
DDTs("LED value",LEDvalue);
LEDvalue = map(LEDvalue, 0, 1023, 0, MAX_INTENSITY); //map to valid value for brightness (max intensity is 15 btw)
if (LEDvalue <= 11) {
mx.control(MD_MAX72XX::INTENSITY, minbright);}
else if (LEDvalue > 13 ) {
mx.control(MD_MAX72XX::INTENSITY, maxbright); }
else
{mx.control(MD_MAX72XX::INTENSITY, midbright); }
DDTl("Mapped LED value", LEDvalue);
} //end of LEDbrightness
void Scrollup() { // used to 'wipe' previous display
for (uint8_t i = 0; i < 8; i++) {
mx.transform(MD_MAX72XX::TSU); delay(2 * DELAYTIME);
delay(DELAYTIME);
}
} // End of Scrollup
void scrollText(char *p) // copied from library
{
uint8_t charWidth;
uint8_t cBuf[8]; // this should be ok for all built-in fonts
mx.clear();
while (*p != '\0')
{
charWidth = mx.getChar(*p++, sizeof(cBuf) / sizeof(cBuf[0]), cBuf);
for (uint8_t i = 0; i <= charWidth; i++) // allow space between characters
{mx.transform(MD_MAX72XX::TSL);
if (i < charWidth)
mx.setColumn(0, cBuf[i]);
delay(DELAYTIME);}
}
} // End of Scroll Text
void printText(char *pMsg, int LOS, bool CenterJustify) // copied and modified from library
// Print the text string to the LED matrix modules specified.
// Message area is padded with blank columns after printing.
// And center justified if third argument is "true"
{
uint8_t modStart = 0;
uint8_t modEnd = MAX_DEVICES - 1;
uint8_t state = 0;
uint8_t curLen;
uint16_t showLen;
uint8_t cBuf[8];
int16_t col = ((modEnd + 1) * COL_SIZE) - 1;
int pixelcount = 0;
int ccounter = LOS;
mx.control(modStart, modEnd, MD_MAX72XX::UPDATE, MD_MAX72XX::OFF);
do // finite state machine to print the characters in the space available
{ switch (state)
{
case 0: // Load the next character from the font table
// if we reached end of message, reset the message pointer
if (*pMsg == '\0')
{
showLen = col - (modEnd * COL_SIZE); // padding characters
state = 2;
break;
}
// retrieve the next character form the font file
showLen = mx.getChar(*pMsg++, sizeof(cBuf) / sizeof(cBuf[0]), cBuf);
if (ccounter > 0) {
pixelcount = (pixelcount + showLen) + CHAR_SPACING;
ccounter--;
}
curLen = 0;
state++;
// !! deliberately fall through to next state to start displaying
case 1: // display the next part of the character
mx.setColumn(col--, cBuf[curLen++]);
// done with font character, now display the space between chars
if (curLen == showLen)
{
showLen = CHAR_SPACING;
state = 2;
}
break;
case 2: // initialize state for displaying empty columns
curLen = 0;
state++;
// fall through
case 3: // display inter-character spacing or end of message padding (blank columns)
mx.setColumn(col--, 0);
curLen++;
if (curLen == showLen)
state = 0;
break;
default:
col = -1; // this definitely ends the do loop
}
} while (col >= (modStart * COL_SIZE));
if (CenterJustify) {
for (int i = 1; i <= (((MAX_DEVICES * COL_SIZE) - pixelcount) / 2); i++) {
mx.transform( MD_MAX72XX::TSR);
}
}
mx.control(modStart, modEnd, MD_MAX72XX::UPDATE, MD_MAX72XX::ON);
}
void printCenter(String StringtoPrint) // Loads the print buffer and centers it
{
int LOS = StringtoPrint.length(); // Get the string's length
for (int i = 0; i < BufferStringLength; i++) {
BufferString[i] = ' '; // clear buffer
}
for (int i = 0; i < LOS; i++) {
BufferString[i] = StringtoPrint[i]; // transfer
printText(BufferString, LOS, true); // Print, providing length of string and "Yes, center"
}
} // End of Center and Load
void ShowValue(int myindex, String setdescription) // Display while in setup mode
{ // shows what item is setting and its value
for (int i = 0; i < BufferStringLength; i++) {BufferString[i] = ' ';} // clear buffer
setdescription.toCharArray(BufferString, setdesclength); // move description to output buffer
LoadNumber(setarray[setupindex]);
BufferString[setdesclength-1] = ' ';
for (int i = 0; i <setdesclength; i++) {BufferString[i + setdesclength] = TDigits[i];}
if (myindex != setyear) { // only the year is 4 digits, else 2
BufferString[4] = ' ';
BufferString[5] = ' ';
if (BufferString[6] == '0') {BufferString[6] = ' ';} // and suppress leading 0 for 2 digit numbers too
}
BufferString[8] = '\0'; // and terminate
printText(BufferString, 7, false);
} // End of Show Value
void LoadNumber(int numtoload) { // Converts number to four digit Ascii array
int tempnum = numtoload;
for (int i = 3; i >= 0; i--) {
TDigits[i] = (tempnum % 10) + DecToAscii;;
tempnum = tempnum / 10;
}
} // end of LoadNumber
void QueueSound(int SoundFile) { // place a sound to be played into sequence
if ((SoundQueuePtr == SizeQueue) || (SoundQueueCtr <= 0)) {
SoundQueuePtr = -1; // Dont overflow the queue
}
SoundQueuePtr++; // Increment pointer
SoundQueue[SoundQueuePtr] = SoundFile; // and store the sound chosen
SoundQueueCtr++; // and increment # sounds in queue
} // end of Queue Sound File
void PlaySound() { // Plays appropriate Sound file
if (SoundQueueCtr > 0) { // if nothing in the queue, just return
if (digitalRead(SoundBusyPin) == LOW) { //or if sound card busy, just return
return;
} //until idle
if (SoundPlayPtr == SizeQueue) {
SoundPlayPtr = -1; // Dont go past the queue
}
SoundPlayPtr++; // Increment pointer
digitalWrite(FirstSoundPin + SoundQueue[SoundPlayPtr], LOW); //Play the sound
delay(fxset); // hold to start the sound
digitalWrite(FirstSoundPin + SoundQueue[SoundPlayPtr], HIGH); //Turn off the sound
delay(fxset); // Ensure its set
SoundQueueCtr--; // and decrement sounds yet to be played
if (SoundQueueCtr <= 0) {
SoundPlayPtr = -1;
}; // reset play pointer when queue is empty
}
} // end of PlaySound
/*
void PlaySoundUART() // uncomment for FX sound board UART use
// sfx.playTrack(name); }
{
Serial.print("\nPlaying track \""); Serial.print(name); Serial.print("\"");
if (! sfx.playTrack(name) ) {
Serial.println("Failed to play track?");
}
}
*/
#ifdef showoffcode
void ShowOff() { // Played at startup -- just the MX Panel Test Graphics
QueueSound(SoundShowOff); // play Game of Thones theme as sound
PlaySound();
scrollText("Showing Off");
rows();
columns();
cross();
checkboard();
bullseye();
bounce();
stripe();
stripe();
transformation1();
transformation2();
bullseye();
spiral();
delay(2000);
DisplayIndex = DisplayTime; // force display of time after showing off display
} // end of Show Off
void rows() // these routines are all
// Demonstrates the use of setRow() // from the MX library
{mx.clear();
for (uint8_t row = 0; row < ROW_SIZE; row++)
{
mx.setRow(row, 0xff);
delay(2 * DELAYTIME);
mx.setRow(row, 0x00);
}
}
void checkboard()
// nested rectangles spanning the entire display
{
uint8_t chkCols[][2] = { { 0x55, 0xaa }, { 0x33, 0xcc }, { 0x0f, 0xf0 }, { 0xff, 0x00 } };
mx.clear();
for (uint8_t pattern = 0; pattern < sizeof(chkCols) / sizeof(chkCols[0]); pattern++)
{
uint8_t col = 0;
uint8_t idx = 0;
uint8_t rep = 1 << pattern;
while (col < mx.getColumnCount())
{
for (uint8_t r = 0; r < rep; r++)
mx.setColumn(col++, chkCols[pattern][idx]); // use odd/even column masks
idx++;
if (idx > 1) idx = 0;
}
delay(10 * DELAYTIME);
}
} // end of Checkboard
void columns()
// Demonstrates the use of setColumn()
{
mx.clear();
for (uint8_t col = 0; col < mx.getColumnCount(); col++)
{
mx.setColumn(col, 0xff);
delay(DELAYTIME / MAX_DEVICES);
mx.setColumn(col, 0x00);
}
}
void cross()
// Combination of setRow() and setColumn() with user controlled
// display updates to ensure concurrent changes.
{
mx.clear();
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::OFF);
// diagonally down the display R to L
for (uint8_t i = 0; i < ROW_SIZE; i++)
{
for (uint8_t j = 0; j < MAX_DEVICES; j++)
{
mx.setColumn(j, i, 0xff);
mx.setRow(j, i, 0xff);
}
mx.update();
delay(DELAYTIME);
for (uint8_t j = 0; j < MAX_DEVICES; j++)
{
mx.setColumn(j, i, 0x00);
mx.setRow(j, i, 0x00);
}
}
// moving up the display on the R
for (int8_t i = ROW_SIZE - 1; i >= 0; i--)
{
for (uint8_t j = 0; j < MAX_DEVICES; j++)
{
mx.setColumn(j, i, 0xff);
mx.setRow(j, ROW_SIZE - 1, 0xff);
}
mx.update();
delay(DELAYTIME);
for (uint8_t j = 0; j < MAX_DEVICES; j++)
{
mx.setColumn(j, i, 0x00);
mx.setRow(j, ROW_SIZE - 1, 0x00);
}
}
// diagonally up the display L to R
for (uint8_t i = 0; i < ROW_SIZE; i++)
{
for (uint8_t j = 0; j < MAX_DEVICES; j++)
{
mx.setColumn(j, i, 0xff);
mx.setRow(j, ROW_SIZE - 1 - i, 0xff);
}
mx.update();
delay(DELAYTIME);
for (uint8_t j = 0; j < MAX_DEVICES; j++)
{
mx.setColumn(j, i, 0x00);
mx.setRow(j, ROW_SIZE - 1 - i, 0x00);
}
}
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::ON);
}
void bullseye()
// Demonstrate the use of buffer based repeated patterns
// across all devices.
{
mx.clear();
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::OFF);
for (uint8_t n = 0; n < 3; n++)
{
byte b = 0xff;
int i = 0;
while (b != 0x00)
{
for (uint8_t j = 0; j < MAX_DEVICES + 1; j++)
{
mx.setRow(j, i, b);
mx.setColumn(j, i, b);
mx.setRow(j, ROW_SIZE - 1 - i, b);
mx.setColumn(j, COL_SIZE - 1 - i, b);
}
mx.update();
delay(3 * DELAYTIME);
for (uint8_t j = 0; j < MAX_DEVICES + 1; j++)
{
mx.setRow(j, i, 0);
mx.setColumn(j, i, 0);
mx.setRow(j, ROW_SIZE - 1 - i, 0);
mx.setColumn(j, COL_SIZE - 1 - i, 0);
}
bitClear(b, i);
bitClear(b, 7 - i);
i++;
}
while (b != 0xff)
{
for (uint8_t j = 0; j < MAX_DEVICES + 1; j++)
{
mx.setRow(j, i, b);
mx.setColumn(j, i, b);
mx.setRow(j, ROW_SIZE - 1 - i, b);
mx.setColumn(j, COL_SIZE - 1 - i, b);
}
mx.update();
delay(3 * DELAYTIME);
for (uint8_t j = 0; j < MAX_DEVICES + 1; j++)
{
mx.setRow(j, i, 0);
mx.setColumn(j, i, 0);
mx.setRow(j, ROW_SIZE - 1 - i, 0);
mx.setColumn(j, COL_SIZE - 1 - i, 0);
}
i--;
bitSet(b, i);
bitSet(b, 7 - i);
}
}
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::ON);
}
void spiral()
// setPoint() used to draw a spiral across the whole display
{
int rmin = 0, rmax = ROW_SIZE - 1;
int cmin = 0, cmax = (COL_SIZE * MAX_DEVICES) - 1;
mx.clear();
while ((rmax > rmin) && (cmax > cmin))
{
// do row
for (int i = cmin; i <= cmax; i++)
{
mx.setPoint(rmin, i, true);
delay(DELAYTIME / MAX_DEVICES);
}
rmin++;
// do column
for (uint8_t i = rmin; i <= rmax; i++)
{
mx.setPoint(i, cmax, true);
delay(DELAYTIME / MAX_DEVICES);
}
cmax--;
// do row
for (int i = cmax; i >= cmin; i--)
{
mx.setPoint(rmax, i, true);
delay(DELAYTIME / MAX_DEVICES);
}
rmax--;
// do column
for (uint8_t i = rmax; i >= rmin; i--)
{
mx.setPoint(i, cmin, true);
delay(DELAYTIME / MAX_DEVICES);
}
cmin++;
}
}
void bounce()
// Animation of a bouncing ball
{
const int minC = 0;
const int maxC = mx.getColumnCount() - 1;
const int minR = 0;
const int maxR = ROW_SIZE - 1;
int nCounter = 0;
int r = 0, c = 2;
int8_t dR = 1, dC = 1; // delta row and column
mx.clear();
while (nCounter++ < 200)
{
mx.setPoint(r, c, false);
r += dR;
c += dC;
mx.setPoint(r, c, true);
delay(DELAYTIME / 2);
if ((r == minR) || (r == maxR))
dR = -dR;
if ((c == minC) || (c == maxC))
dC = -dC;
}
}
void stripe()
// Demonstrates animation of a diagonal stripe moving across the display
// with points plotted outside the display region ignored.
{
const uint16_t maxCol = MAX_DEVICES*ROW_SIZE;
const uint8_t stripeWidth = 10;
mx.clear();
for (uint16_t col=0; col<maxCol + ROW_SIZE + stripeWidth; col++)
{
for (uint8_t row=0; row < ROW_SIZE; row++)
{
mx.setPoint(row, col-row, true);
mx.setPoint(row, col-row - stripeWidth, false);
}
delay(DELAYTIME);
}
}
void transformation1()
// Demonstrates the use of transform() to move bitmaps on the display
// In this case a user defined bitmap is created and animated.
{
uint8_t arrow[COL_SIZE] =
{
0b00001000,
0b00011100,
0b00111110,
0b01111111,
0b00011100,
0b00011100,
0b00111110,
0b00000000
};
MD_MAX72XX::transformType_t t[] =
{
MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL,
MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL,
MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL,
MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL,
MD_MAX72XX::TFLR,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TRC,
MD_MAX72XX::TSD, MD_MAX72XX::TSD, MD_MAX72XX::TSD, MD_MAX72XX::TSD,
MD_MAX72XX::TSD, MD_MAX72XX::TSD, MD_MAX72XX::TSD, MD_MAX72XX::TSD,
MD_MAX72XX::TFUD,
MD_MAX72XX::TSU, MD_MAX72XX::TSU, MD_MAX72XX::TSU, MD_MAX72XX::TSU,
MD_MAX72XX::TSU, MD_MAX72XX::TSU, MD_MAX72XX::TSU, MD_MAX72XX::TSU,
MD_MAX72XX::TINV,
MD_MAX72XX::TRC, MD_MAX72XX::TRC, MD_MAX72XX::TRC, MD_MAX72XX::TRC,
MD_MAX72XX::TINV
};
// transformation
mx.clear();
// use the arrow bitmap
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::OFF);
for (uint8_t j=0; j<mx.getDeviceCount(); j++)
mx.setBuffer(((j+1)*COL_SIZE)-1, COL_SIZE, arrow);
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::ON);
delay(DELAYTIME);
// run through the transformations
mx.control(MD_MAX72XX::WRAPAROUND, MD_MAX72XX::ON);
for (uint8_t i=0; i<(sizeof(t)/sizeof(t[0])); i++)
{
mx.transform(t[i]);
delay(DELAYTIME*4);
}
mx.control(MD_MAX72XX::WRAPAROUND, MD_MAX72XX::OFF);
}
void transformation2()
// Demonstrates the use of transform() to move bitmaps on the display
// In this case font characters are loaded into the display for animation.
{
MD_MAX72XX::transformType_t t[] =
{
MD_MAX72XX::TINV,
MD_MAX72XX::TRC, MD_MAX72XX::TRC, MD_MAX72XX::TRC, MD_MAX72XX::TRC,
MD_MAX72XX::TINV,
MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TSD, MD_MAX72XX::TSU, MD_MAX72XX::TSD, MD_MAX72XX::TSU,
MD_MAX72XX::TFLR, MD_MAX72XX::TFLR, MD_MAX72XX::TFUD, MD_MAX72XX::TFUD
};}
#endif //showoffcode//
Subscribe and Download code.
download code:
Comments